A Strategy for STEM Learning in a Changing Society: Focusing on the Undergraduate Program

Mathematics Education Using Real-World Problems

Mitsuru Kawazoe
Osaka Prefecture University
Japan
Background

- It is increasingly important for all students at all educational levels to acquire mathematical skills for use in real-world situations.

- An important issue in Japan: mathematical literacy education for ‘Bunkei’ students (=humanities & social sciences students)

 - Aims of mathematical literacy educations for Bunkei students:
 - to foster students’ mathematical skill for use in real-world situations
 - to improve students’ attitude towards math

- However, it is challenging because many of those students have
 - math anxiety and difficulty in learning math,
 - little knowledge about how mathematics is used in the real world.

- **Question:** How should we design mathematical literacy education for Bunkei students?
New Math Courses (2012-)

- Math courses for the humanities & social sciences students of the first year at Osaka Prefecture University.
 - Basic Math I (spring semester)
 - Basic Math II (Autumn semester)
 - 90 min/week for 14 weeks followed by an examination period
 - 4 classes taught by 4 teachers (60-80 students in each class)
Design Principles

(Kawazoe et al., 2013; Kawazoe & Okamoto, 2017)

1. Design lessons according to *mathematical modelling processes*.
2. Choose *topics & contexts* by considering which mathematical knowledge students are likely to *encounter in real life* and in which *situation* they will encounter it.
3. *Present problems in different contexts* associated with the same mathematical knowledge.
4. *Connect different mathematical knowledge together* by using different mathematizations of the same problem or mutually related contexts.
5. Explain mathematical concepts & operations using *both mathematical language & everyday language*.
6. Engage students in *group activities* rather than individual ones.
7. Design worksheets based on analysis of *students’ understanding process* and use them as *tools for formative assessment*.
Design Principles

(Kawazoe et al., 2013; Kawazoe & Okamoto, 2017)

1. Design lessons according to mathematical modelling processes.

- **Problem in Real World**
- **Discussion**
- **Prediction**
- **Mathematization**
- **Mathematical Model**
- **Validation**
- **Working Mathematically**
- **Answer for Real-world Problem**
- **Mathematical Result**
- **Interpretation**
- **Reflection**

START!
Design Principles

(Kawazoe et al., 2013; Kawazoe & Okamoto, 2017)

1. Design lessons according to *mathematical modelling processes*.

2. Choose *topics & contexts* by considering which mathematical knowledge students are likely to *encounter in real life* and in which *situation* they will encounter it.

3. *Present problems in different contexts* associated with the same mathematical knowledge.

4. *Connect different mathematical knowledge together* by using different mathematizations of the same problem or mutually related contexts.

5. Explain mathematical concepts & operations using *both mathematical language & everyday language*.

6. Engage students in *group activities* rather than individual ones.

7. Design worksheets based on analysis of *students’ understanding process* and use them as *tools for formative assessment*.
Design Principles

(Kawazoe et al., 2013; Kawazoe & Okamoto, 2017)

Basic Math I (Spring semester)
- systems of linear equations/inequalities (linear programming)
- number sequences (savings, loan payment, pharmacokinetics, model of addiction, etc.)
- matrices & vectors (spreadsheets, social networks analysis)
- functions (mental rotation, pharmacokinetics, bacterial growth, pandemic, etc.)
- probability (lottery, disease examination, birthday paradox, Bayesian estimation)

Basic Math II (Autumn semester)
- eigenvalues/vectors (population dynamics, optimal distribution, etc.)
- functions (cyclical movement of electric demand, sound composition, etc.)
- derivatives (innovation diffusion, population growth, logistic function, marginal profit)
- integrals (speed & distance, accumulated radiation level, standard normal distribution)
- multivariable functions (loan simulator, formulas for estimating vital capacity, optimization problem, etc.)
Design Principles

(Kawazoe et al., 2013; Kawazoe & Okamoto, 2017)

1. Design lessons according to mathematical modelling processes.

2. Choose *topics & contexts* by considering which mathematical knowledge students are likely to *encounter in real life* and in which *situation* they will encounter it.

3. *Present problems in different contexts* associated with the same mathematical knowledge.

4. *Connect different mathematical knowledge together* by using different mathematizations of the same problem or mutually related contexts.

5. Explain mathematical concepts & operations using *both mathematical language & everyday language*.

6. Engage students in *group activities* rather than individual ones.

7. Design worksheets based on analysis of *students’ understanding process* and use them as *tools for formative assessment*.
Design Principles

(Kawazoe et al., 2013; Kawazoe & Okamoto, 2017)

Classroom materials (Examples)

- **Context** Loan payment
- **Context** Blood fexofenadine level (Pharmacy)
- **Context** Blood caffeine level after drinking a cup of coffee
- **Context** Salmonella growth
- **Context** Analyzing the spreading pattern of disease. (FMD outbreak, H1N1)

Number sequences
- Recurrence relation: $a_{n+1} = c a_n + d$
- Geometric progression: $a_{n+1} = c a_n$

Functions
- Exponential Function
- Semi-Log Plot

Context
- Rivo payment of shopping
- Considering a newspaper article with a semi-log graph of radioactive cesium concentration in soil after Fukushima nuclear disaster

Items in Final Exam (Examples)
Design Principles

(Kawazoe et al., 2013; Kawazoe & Okamoto, 2017)

1. Design lessons according to mathematical modelling processes.

2. Choose topics & contexts by considering which mathematical knowledge students are likely to encounter in real life and in which situation they will encounter it.

3. Present problems in different contexts associated with the same mathematical knowledge.

4. Connect different mathematical knowledge together by using different mathematizations of the same problem or mutually related contexts.

5. Explain mathematical concepts & operations using both mathematical language & everyday language.

6. Engage students in group activities rather than individual ones.

7. Design worksheets based on analysis of students’ understanding process and use them as tools for formative assessment.
Example: Eigenvalues/vectors (2-weeks lesson)

Rental Bicycle Service Problem

- 2 Parkings (A, B)
- Bicycles can be dropped off at any of the 2 parkings
- Monitoring investigation (weekly data)
- The service will start with more than 100 bicycles.
- How to divide bicycles between 2 parkings?

Students already learned the transition matrix, but have not learned eigenvectors/values yet.

<table>
<thead>
<tr>
<th>From \ To</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>80 (%)</td>
</tr>
</tbody>
</table>
1st week: discovering eigenvectors

• How to divide bicycles between the 2 parkings? (*Group discussion*)

Simulation! What occurs?

• Choose an initial data and calculate the distribution of the following 5 weeks. (*Group activity*)
 \[
 \begin{pmatrix}
 0.7 & 0.2 \\
 0.3 & 0.8
 \end{pmatrix}
 ^n
 \begin{pmatrix}
 200 \\
 100
 \end{pmatrix}
 =
 \begin{pmatrix}
 ??? \\
 ???
 \end{pmatrix}

From \ To	A	B
 A | 70 | 30
 B | 20 | 80 (%)

• Plot the data of all groups on the graph paper. (*Group activity*)

What can be found?

• Eigenvectors/values are introduced.
2nd week: explain with eigenvectors

- Re-interpretation:

\[
\begin{pmatrix}
200 \\
100
\end{pmatrix} = \text{??} \begin{pmatrix}
2 \\
3
\end{pmatrix} + \text{??} \begin{pmatrix}
-1 \\
1
\end{pmatrix}
\]

\[
P^n \begin{pmatrix}
200 \\
100
\end{pmatrix} = P^n \begin{pmatrix}
120 \\
180
\end{pmatrix} + P^n \begin{pmatrix}
80 \\
-80
\end{pmatrix}
\]

\[
= \begin{pmatrix}
120 \\
180
\end{pmatrix} + 0.5^n \begin{pmatrix}
80 \\
-80
\end{pmatrix}
\]

- What is an optimal solution?

✓ Optimal solution
 = stable point
 = eigenvector with eigenvalue 1

- Homework:

✓ a similar problem, but in another context
Evaluation of Teaching Practices

• The average of mean scores of the final exam (2012-2018):
 • 72.3 (BMI) & 74.2 (BMII) (full mark=100)

• Results of a self-report questionnaire (Kawazoe et al., 2013):
 • The rates of students who answered that their interest in math increased during the semester were 60.4% (BMI) & 60.6% (BMII).

Results of Self-evaluation (1) (Result of 2012 academic year)

“How did your interest on mathematics change during the semester?”

- Basic Math I (n=285):
 - Not changed: 49%
 - Increased: 35%
 - Decreased: 11%
 - Much increased: 3%
 - Unanswered: 2%

- Basic Math II (n=226):
 - Not changed: 55%
 - Increased: 35%
 - Decreased: 2%
 - Much increased: 6%
 - Unanswered: 2%
• The rates of students who answered that their *mathematical thinking skills improved* during the semester were 74.0% (BMI) & 70.8% (BMII).
• Analysis of students’ free comments in worksheets (BMI in 2018):
 • The frequency of comments containing descriptions showing meta-cognitive reflection per student was greater for students who did not like mathematics than for students who liked mathematics at the beginning of the course. (Kawazoe, 2019)
Evaluation of Teaching Practices

• The average of mean scores of the final exam (2012-2018):
 • 72.3 (BMI) & 74.2 (BMII) (full mark=100)

• Results of a self-report questionnaire (Kawazoe et al., 2013):
 • The rates of students who answered that their *interest in math increased* during the semester were 60.4% (BMI) & 60.6% (BMII).
 • The rates of students who answered that their *mathematical thinking skills improved* during the semester were 74.0% (BMI) & 70.8% (BMII).

• Analysis of students’ free comments in worksheets (BMI in 2018):
 • The frequency of comments containing descriptions showing *meta-cognitive reflection* per student was greater for students who did not like mathematics than for students who liked mathematics at the beginning of the course. (Kawazoe, 2019)
Thank you.

kawazoe@las.osakafu-u.ac.jp